If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+105x=0
a = 7; b = 105; c = 0;
Δ = b2-4ac
Δ = 1052-4·7·0
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11025}=105$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-105}{2*7}=\frac{-210}{14} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+105}{2*7}=\frac{0}{14} =0 $
| (2x^2)-(10^x)-6=0 | | −3m=4.2 | | 7(n-1)=6n | | (6+z)(3z-4)=0 | | 2.x+3.x=4+6 | | 2i(2i)=0 | | -8.x-4=-20 | | 6x-8=2x-9 | | 2x+42=-x+11 | | 7;8z-15=41 | | 10+(x+7)= | | 5;5(7-t)=2t | | -2;4-2x=-3x | | 12-(5x+3)^3=20 | | 4^x=0.25 | | 18;90=5y | | 46=18-2y | | 9w-3w=12 | | -7.x+8=15 | | 2i+5i=0 | | (x+5)*(x-1)=0 | | P-2p-5=3-2p | | t^2/4-2t=1/2 | | (1/5)^x=-125 | | 4.7x-8=1.4 | | x²÷0.0100-0.2x+x²=4.24 | | 1/5x=-125 | | -3.3+y/4=-9.7 | | 7.x-3=-17 | | 7g-8-9g=5-2g-13 | | 3(n-5)2-4=11(n-5) | | 5a-20+a(-3)=50 |